サイトマップ
お問い合わせ
電話番号・メールアドレス
このページでは JavaScript を使用している部分があります。お使いのブラウザーがこれらの機能をサポートしていない場合、もしくは設定が「有効」となっていない場合は正常に動作しないことがあります。​
レイヤー解析とは、ICチップ内の各層(レイヤー)の観察と除去を繰り返して、異常の有無を確認する手法です。
当社で所有するプラズマFIB〔TESCAN SOLARIS X(Xeビーム加工)〕を用いたGaフリー加工において、SiC拡散層観察での有用性が確認できました。へ・・・
FIB加工とSEM観察・EDS分析を繰り返し、取得した像をソフトウェアで再構築することで複合材料の情報を3次元的に得ることができ、欠陥や空孔を正確に把握できます・・・
試料の内部をX線で透過して観察することにより、試料を分解することなく非破壊で観察できます。
TSVは、Siを貫通するビアを形成しメタルを埋め込みます。このメタルの応力により酸化膜のクラックが発生し、リーク不良に至るケースがあります。EBSDで結晶粒ごと・・・
FIB加工とSEM観察、EDS分析を繰り返し、取得した像をソフトウェアで再構築することで複合材料の情報を3次元的に得ることができ、欠陥や空孔を正確に把握できます・・・
走査型マイクロ波インピーダンス顕微鏡(sMIM)は、半導体のキャリア分布を2次元で可視化できる手法で、SPMの応用の一つです。
半導体・電子デバイスのどこで故障したのか、製品がどんな工程でつくられたか、分子構造・結晶構造など、さまざまなあなたの『見たい!』にお応えします。
半導体デバイスの故障解析の手順として、故障発生状況の調査、外観観察および電気特性を取得し、故障メカニズムを推測します。次に、非破壊検査や故障特定を行なった後、さ・・・
半導体デバイスやFPDの故障解析では、故障発生状況の把握、外観観察および電気特性取得の後、故障メカニズムの推測を行います。次に故障箇所の特定を行い、表面または断・・・
半導体デバイスの構造解析では、FIB/SEMで表面や断面を観察します。一般的には立体構造をした素子の一部分を切り出し、2次元の平板な画像を得ることで、どのような・・・
電子デバイスは様々な特性から選択した異種材料が一体化して形成されており、異種材料間の接合技術が重要な鍵を握ります。 3次元のFIB-SEM/EDS・EBSD・ラ・・・
原子間力顕微鏡(AFM : Atomic Force Microscope)はナノスケールの微小な表面形状を3次元で可視化・数値化できる手法です。
パワーMOSFETの故障解析には、不具合特性を維持しながら故障箇所を特定することが重要です。そのために、裏面からOBIRCH/PEM(EMS)で特定し、裏面から・・・
SCMは半導体のキャリア分布を2次元で可視化できる手法で、SPMの応用の一つです。
今後、普及が見込まれているSiCパワーデバイスも、Siデバイスと同様の手法で故障解析を行うことができます。 ここでは、ESD試験で破壊した SiC MOSFET・・・
ICチップ内の多層配線やSi基板の故障箇所を特定するために、SEMで電位コントラスト(PVC)の違いを観察します。
走査電子顕微鏡(SEM)は、試料の表面に電子線を照射して観察することで、微細な表面形状や組成、結晶方位を観察することができます。
受託分析サービス動画配信 随時更新します!
Webカタログ ダウンロード
論文
略語集
申込書・問い合わせ書 ダウンロード
よくあるご質問
依頼に関するお問い合わせ
入力フォームはこちらから